Why High School Robotics Matters – Even for English Majors

By Nicole Bell April 2, 2014 8:00 PM

I consider myself privileged to have the sort of friends and colleagues who consider robots cool. It’s a given that when I mention coaching my school’s robotics team, I’m met with an enthusiastic “Awesome!” or “Ooh, can I see your robot?!” I wholeheartedly agree with that sentiment, although I have to admit that when I work until 7pm coaching the team (and then go home to lesson plan, contact parents and grade) that robot can seem just a little less cool. What keeps me invested in the team is that robots aren’t just awesome – they can play a critical role in preparing students for their future.

Most students think they should join robotics if they’re interested in engineering or programming, and there’s a certain truth to that. Participating in a high school robotics team helps students learn the basic principles of mechanics, design, and coding that can help them get a head start on college coursework. In addition, being a participant in enrichment programs like FIRST Robotics opens up a wealth of college scholarship opportunities. What students don’t realize, however, is that those FIRST Robotics scholarships are often available to students who don’t plan to major in engineering, and that those same principles they learn through robotics can prepare them for any career.

Developing students’ college preparedness is a goal that looms large in the minds and conversations of high school teachers. Although definitions and theories can shift, there’s generally a consensus that we want our students prepared with a mixture of specific skills (like algebra and grammar) and more general skills (like critical problem solving and flexible thinking). The brilliance of a program like FIRST Robotics, which my high school participates in, is that it seamlessly incorporates both types of skills and disguises them as fun.

Unsurprisingly, math is one of the major skill sets that is developed through robotics. Students endlessly work on fractions through measurement calculations, engaging problems like: “This metal bar is 5 ¾ inches right now. You need to cut a second bar that would be an inch shorter than half that length.” Students also use algebra, trigonometry, and geometry to figure out things like how tall their robot needs to be or how to build a ball shooter that actually works. While performing endless calculations gets tiresome on a worksheet, doing them in the context of robotics provides an immediate and tangible payout for every problem. I’ve seen students who’d give up on a normal math class problem persevere through the same type of problem in robotics – because in the robotics room, math leads to creation.

The connection between math and robotics is well known, but many people don’t realize that robotics also helps students read and interpret complex texts. Each year, FIRST releases a new competition with its own set of rules. In this year’s game, robots work on teams of three to get a large ball across the field and into different goals. Last year, robots shot Frisbees into goals and tried to climb a tower. The rules that govern the match can be complicated to decipher, giving students practice with engaging technical manuals in order to understand them. For example, rule G23 for this year states: If a ROBOT is in contact with carpet in its GOALIE ZONE, and for only one ROBOT per ALLIANCE at a time, there is no height restriction; however, any extension or combination of extensions above 5 ft. may not extend beyond a vertical cylinder with a 6 in. diameter (see examples in Figure 3-5).” Students need to read the rule, break down the meaning, visualize what it’s saying, and then apply it to their design and strategy. Just as with math, students are more dedicated to engaging these texts than a similarly complicated text in their class. In robotics, unpacking the rules’ meaning rewards them with being one step closer to a competitive robot.

Beyond these hard skills, robotics helps students gain the so-called soft skills they’ll need in any career. Teamwork is critical on a robotics team, and throughout the build season students must balance their different ideas and skill sets to collaborate on a challenging task. At the competition itself, for each of our matches our school plays on an alliance with two other schools (in some cases, from as far away as Istanbul). The partners on your alliance change ten times over the course of the tournament, giving students plenty of practice with the delicate art of developing a joint strategy that balances the needs, strengths and weaknesses of all three alliance members. Throughout the tournament students also practice their communication skills, as they try to powerfully and succinctly describe their robot’s strengths and strategy to their fellow competitors and judges. Team members receive a background in budget management, fundraising and public relations as well, since a robotics team is expensive to run and requires pitching yourselves to sponsors and other fundraising throughout the year. On top of those skills, students learn time management and how to work under high-pressure deadlines – there are only six weeks between the announcement of the new FIRST game and when teams have to have their robot completed.

During those six weeks of building students experience great successes, but they also learn and grow from failures. They might measure something incorrectly or try an approach that doesn’t pan out – and that’s okay. Students repeatedly have to put themselves out there, see that something doesn’t work, and then adjust course to move forward. That is an incredibly important skill, and one that doesn’t always get practiced in a normal high school classroom. Doing robotics, students need to think creatively and flexibly to solve the types of problems that are presented to them, and they enter a world where there are no pre-determined right answers that the teacher is waiting to receive. This is the real world, and having those experiences helps students to thrive in whatever they eventually choose to do.

Our future engineers and computer programmers have much to learn from robotics. Any future thinker and shaper of our world has just as much to learn from a robotics team, however – and that’s who we want all of our students to grow up to be.

If you’re interested in learning more about FIRST Robotics, please visit www.usfirst.org

Advertisements